slope drift의 숨은 원인들1. “이번 배치는 slope가 좀 다르네요”라는 말의 정체LC-MS/MS 분석 회의에서가장 자주, 가장 가볍게 나오는 말 중 하나가 이것이다.“이번 배치는 slope가 조금 다르네요.”그리고 보통 이렇게 이어진다.R²는 괜찮음back-calculated accuracy도 허용 범위QC도 통과그래서 결론은 늘 같다.“사용에는 문제 없습니다.”하지만 여기서 놓치는 사실이 있다.slope가 바뀌었다는 건, 이미 시스템이 바뀌었다는 신호라는 점이다.2. Calibration curve는 ‘선’이 아니라 ‘시스템의 지문’이다우리는 calibration curve를종종 단순히 이렇게 생각한다.농도 vs response의 직선정량을 위한 수학적 도구하지만 실제로 calibratio..
IS가 있는데도 결과가 무너지는 이유1. “IS는 문제없는데요?”라는 말이 가장 위험하다LC-MS/MS 분석에서결과가 흔들릴 때가장 먼저 확인하는 것은 거의 항상 이것이다.IS peak 있음RT 정상area도 큰 문제 없어 보임그리고 이렇게 결론이 내려진다.“IS는 정상입니다.”이 문장은안심을 주는 말처럼 들리지만,실제로는 가장 많은 문제를 숨긴다.2. IS가 있다는 사실과, IS가 ‘작동한다’는 것은 다르다우리는 종종IS를 이렇게 생각한다.넣어두면 자동으로 보정해주는 장치있으면 matrix effect도, loss도 해결됨하지만 IS는존재만으로는 아무것도 보정하지 않는다.IS가 보정 역할을 하려면아주 까다로운 조건이 충족되어야 한다.3. IS 보정이 성립하는 전제 조건IS가 제대로 작동하려면분석 시스템..
LC-MS/MS 분석이 흔들리는 진짜 이유를 다루는 방법1. Matrix effect는 늘 알고 있었지만, 늘 뒤로 밀려났다LC-MS/MS를 처음 배울 때Matrix effect는 항상 이렇게 등장한다.ion suppression / enhancementpost-column infusionmatrix factor 계산IS 보정교과서적으로는 완벽하다.하지만 실험실에서는 이상한 일이 반복된다.Validation에서는 문제 없던 method가실제 샘플이 쌓이기 시작하면어느 순간부터 결과가 흔들린다QC fail이 나고,IS response가 이상해지고,분석가는 이렇게 말한다.“이거… matrix effect 같은데요.”하지만 그 말은대부분 그 자리에서 끝난다.2. 왜 Matrix effect는 항상 “사후 설명..
– Peak shape, S/N, tailing을 SOP로 고정하는 방법1. “이 피크, 좀 별로인데…”는 언제나 말로만 끝난다LC-MS/MS 분석실에서 가장 자주 오가는 말 중 하나는 이것이다.“이 피크, 좀 별로죠?”하지만 이상하게도이 말은 늘 공기 중에 흩어지고,어디에도 기록되지 않는다.QC는 pass수치는 기준 충족결과는 reportable그런데도분석가는 찜찜하다.이 ‘찜찜함’이LC-MS 분석에서 가장 위험한 영역이다.2. ‘좋은 피크’는 왜 정의되지 않은 채 사용되는가아이러니하게도LC-MS/MS 분석에서가장 중요한 요소 중 하나인 peak quality는대부분의 SOP에서 이렇게 한 줄로 끝난다.“적절한 peak shape를 확인한다.”문제는 여기서 “적절한”이라는 단어다.누구에게 적절한가?언제..
– 코드가 아니라 ‘판단 기준’을 문서로 남기는 기술 1. 자동화는 되어 있는데, SOP에는 왜 남지 않는가많은 분석팀이 이런 상태에 있다.R 기반 자동화 파이프라인은 잘 돌아가고QC, trend, anomaly 결과도 매일 확인하지만SOP에는 여전히 예전 문장이 그대로 남아 있다예를 들면 이런 식이다.“QC 결과를 검토하여 분석 적합성을 판단한다.”이 문장은 틀리지 않다.하지만 아무것도 설명하지 않는다.그리고 audit에서 항상 같은 질문이 나온다.“검토했다는 근거는 무엇입니까?”자동화의 가치는이 질문에 답할 수 있을 때 비로소 완성된다.2. 가장 큰 오해: “SOP에 코드를 넣어야 한다”R 자동화를 SOP로 옮기려 할 때가장 흔한 실수는 이것이다.“이 R 스크립트를 SOP에 어떻게 써야 하지?”정답은..
실제 조직 도입 사례 –코드를 들여온 게 아니라, 판단을 구조화했다”1. 자동화는 늘 필요했지만, 아무도 시작하지 못했다LC-MS 분석팀에서 “자동화”라는 단어는항상 회의실 어딘가에 떠 있었지만,실제로 손에 잡히는 형태로 내려온 적은 거의 없었다.데이터는 늘 많았고검토 시간은 늘 부족했고QC fail이 나면 항상 “사람”이 원인이었다하지만 그걸 구조적으로 바꾸자는 논의는언제나 이렇게 끝났다.“일단 지금도 돌아가니까…”이 사례의 시작도대부분의 제약·CRO 조직과 다르지 않았다.2. 배경: Multi-project, Multi-batch, Multi-analyst 환경이 조직은 다음과 같은 특징을 갖고 있었다.PK / TDM / tox bioanalysis를 동시에 수행LC-MS/MS 장비 6대 이상분석가 ..
– Raw data 이후, 분석팀의 판단을 구조화하는 데이터 흐름 LC-MS 자동화를 이야기할 때 가장 흔한 오해는 이것이다.“자동화 = raw data부터 전부 R로 처리”실제 제약·CRO 환경에서 가장 현실적인 자동화 파이프라인은👉 vendor software 이후 단계에서 시작한다.즉, 사람의 판단이 반복되는 지점을 R이 대신 정리해 주는 구조다.전체 파이프라인 개요 (개념도) [LC-MS Instrument] ↓ [Vendor Software] (Integration / Calibration / QC 평가) ↓ Exported Data] (CSV / Excel / LIMS dump) ↓ [R 자동화 파이프라인] ├─ 데이터 정합성 검사 ├─ QC / IS / RT 품질 지표 계산 ├─ Trend..
– Vendor software를 넘어, “분석 사고를 확장하는 도구”로서의 RLC-MS 분석을 오래 해본 연구원일수록 이런 감정을 한 번쯤 느낀다.“데이터는 엄청나게 쌓이는데,정작 우리가 활용하는 건 보고서에 들어간 숫자 몇 개뿐이다.”LC-MS/MS 장비는 매 런마다수천 개의 데이터 포인트수십 개의 품질 지표장비 상태를 반영하는 미묘한 신호들을 남긴다.하지만 대부분의 조직에서 이 데이터는👉 vendor software 안에서만 소비되고 사라진다.R을 활용한 데이터 자동화의 진짜 의미는“새로운 분석을 한다”가 아니라,이미 존재하는 LC-MS 데이터를 ‘다르게 읽는 것’에 있다.1. 왜 vendor software만으로는 한계가 생길까?Vendor software는 본질적으로 “개별 batch 처리”에..
- Total
- Today
- Yesterday
- AI
- 제약산업
- Multi-omics
- 디지털헬스케어
- 정량분석
- metabolomics
- 대사체 분석
- LC-MS
- 제약
- 정밀의료
- Spatial metabolomics
- 분석팀
- 데이터
- 분석
- Targeted Metabolomics
- matrix effect
- audit
- 임상시험
- 치료제
- 시스템
- 신약개발
- 약물분석
- 신약 개발
- 미래산업
- 약물개발
- 바이오마커
- 머신러닝
- ich m10
- bioanalysis
- lc-ms/ms
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
