AI 기반 Stability Predicting 모델과 실제 제약 데이터 적용 사례
– 분해를 예측한다는 것, 그리고 책임을 감당한다는 것 1. Stability는 왜 제약 데이터 과학의 마지막 보루처럼 남아 있었을까제약 데이터 중에서AI 적용이 비교적 빨리 자리 잡은 영역은 명확하다.후보물질 스크리닝ADME/Tox 예측합성 경로 최적화반면 stability는 늘 뒤에 남아 있었다.이유는 단순하지 않다.stability는 단순한 “물성 예측” 문제가 아니라시간, 환경, 판단, 규제가 모두 얽힌 영역이기 때문이다.1개월 후 변화3개월 후 변화6개월, 12개월, 24개월…그리고 그 결과는“조금 변했다”가 아니라“출시 가능/불가”라는 결론으로 이어진다.AI가 예측을 틀렸을 때그 대가는 너무 크다. 2. 전통적인 stability 접근의 본질적 한계전통적인 stability 평가는기본적으로 경..
제약산업
2026. 1. 14. 23:10
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- Spatial metabolomics
- 치료제
- 바이오마커
- 디지털헬스케어
- 항암제
- Toxicometabolomics
- 미래산업
- 정량분석
- 제약산업
- 분석팀
- 임상시험
- bioanalysis
- 제약
- Lipidomics
- AI
- 신약 개발
- 머신러닝
- Targeted Metabolomics
- 분석
- 약물개발
- 정밀의료
- 팬데믹
- 바이오의약품
- 대사체 분석
- 신약개발
- metabolomics
- lc-ms/ms
- Multi-omics
- LC-MS
- 약물분석
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | ||||
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 |
글 보관함
